Free access
Issue
Aquat. Living Resour.
Volume 23, Number 3, July-September 2010
Page(s) 239 - 245
DOI http://dx.doi.org/10.1051/alr/2010025
Published online 30 September 2010
  • Barbin V., Ramseyer K., Elfman M., 2008, Biological record of added manganese in seawater: a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas. Int. J. Earth Sci. 97, 193–199. [CrossRef]
  • Bashey F., 2004, A comparison of the suitability of alizarin red S and calcein for inducing a non-lethally detectable mark in juvenile guppies. Trans. Am. Fish. Soc. 133, 1516–1523. [CrossRef]
  • Clark I.G.R., 1974, Growth lines in Invertebrates skeletons Ann. Rev. Earth Th. Pl. Sci. 2, 77–99. [CrossRef]
  • Clarke A., Prothero-Thomas E., Beaumont J.C., Chapman A.L., Brey T., 2004, Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol. 28, 62–71.
  • Cole H.A., 1956, A preliminary study of growth-rate in cockles (Cardium edule L.) in relation to commercial exploitation. J. Cons. Int. Explor. Mer 22, 77–90.
  • Day R.W., Williams M.C., Hawkes G.P., 1995, A comparison of fluorochromes for marking abalone shells. Mar. Freshw. Res. 46, 599–605. [CrossRef]
  • Ellers O., Johnson A.S., 2009, Polyfluorochrome marking slows growth only during the marking month in the green sea urchin Strongylocentrotus droebachiensis. Invertebr. Biol. 128, 126–144. [CrossRef]
  • Evans J.W., 1972, Tidal growth increments in the cockle Clinocardium nuttalli. Science 176, 416–417. [CrossRef] [PubMed]
  • Fahy E., Carroll J., Murran S., 2005, The Dundalk cockle Cerastoderma edule fishery in 2003-2004. Irish Fish. Invest. 14, 16.
  • Fujikura K., Okoshi K., Naganuma T., 2003, Strontium as a marker for estimation of microscopic growth rates in a bivalve. Mar. Ecol. Prog. Ser. 257, 295–301. [CrossRef]
  • Goodwin D.H., Flessa K.W., Schöne B.R., Dettman D.L., 2001, Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California Bivalve Mollusk Chione cortezi: Implications for paleoenvironmental analysis. Palaios 16, 387–398.
  • Hawkes G.P., Day R.W., Wallace M.W., Nugent K.W., Bettiol A.A., Jamieson D.N., Williams M.C., 1996, Analyzing the growth and form of mollusc shell layers, in situ, by cathodoluminescence microscopy and Raman spectroscopy. J. Shellfish Res. 15, 659–666.
  • Hermann M., 2008, Population dynamics of the Argentinean surf clams Donax hanleyanus and Mesodesma mactroides from open-Atlantic beaches off Argentina. Ph.D thesis, Univ. Bremen, Germany.
  • House M.R., Farrow G.E., 1968, Daily growth banding in the shell of the cockle, Cardium edule. Nature 219, 1384–1386. [CrossRef] [PubMed]
  • Kaehler S., McQuaid C.D., 1999, Use of the fluorochrome calcein as an in situ marker in the brown mussel Perna perna. Mar. Biol. 133, 455–460. [CrossRef]
  • Kilada R., Campana S., Roddick D., 2009, Growth and sexual maturity of the northern propellercalm, Cyrtodaria siliqua, in Eastern Canada with bomb radiocarbon age validation. Mar. Biol. 156, 1029–1037. [CrossRef]
  • Langlet D., Alunno-Bruscia M., De Rafelis M., Renard M., Roux M., Schein E., Buestel D., 2006, Experimental and natural cathodoluminescence in the shell of Crassostrea gigas from Thau lagoon (France): ecological and environmental implications. Mar. Ecol. Prog. Ser. 317, 143–156. [CrossRef]
  • Lartaud F., De Rafelis M., Ropert M., Emmanuel L., Geairon P., Renard M., 2010, Mn labelling of living oysters: artificial and natural cathodoluminescence analysis as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300, 206–217. [CrossRef]
  • Lönne O.J., Gray J.S., 1988, Influence of tides on microgrowth bands in Cerastoderma edule from Norway. Mar. Ecol. Prog. Ser. 42, 1–7. [CrossRef]
  • Lucas T., Palmer P.J., Wang S., Scoones R., 2008, Marking the shell of the saucer scallop Amusium balloti for sea ranching using oxytetracycline, calcein and alizarin red S. J. Shellfish Res. 27, 1183–1188. [CrossRef]
  • McKinnon J.F., 1996, Studies of the age, growth and shell increment patterns in the New Zealand cockle (Austrovenus stutchburyi). Ph.D. thesis, Univ. Otago, New Zealand.
  • Monaghan J.P., 1993, Comparison of calcein and tetracycline as chemical markers in summer flounder. Trans. Am. Fish. Soc. 122, 298–301. [CrossRef]
  • Moran A.L., 2000, Calcein as a marker in experimental studies newly-hatched gastropods. Mar. Biol. 137, 893–898. [CrossRef]
  • Moran A.L., Marko P.B., 2005, A simple technique for physical marking of larvae of marine bivalves. J. Shellfish Res. 24, 567–571.
  • Nakahara H., 1961, Determination of growth rates of nacreous layer by the administration of tetracycline. Bull. Nat. Pearl Res. Lab. 6, 607–614.
  • Pineiro C., Rey J., De Pontual H., Goni R., 2007, Tag and recapture of European hake (Merluccius merluccius L.) off the Northwest Iberian Peninsula: First results support fast growth hypothesis. Fish. Res. 88, 150–154. [CrossRef]
  • Pirker J.G., Schiel D.R., 1993, Tetracycline as a fluorescent shell marker in the abalone Haliotis iris. Mar. Biol. 116, 81–86. [CrossRef]
  • Riascos J., Guzma N., Laudien J., Heilmayer O., Oliva M., 2007, Suitability of three stains to mark shells of Concholepas concholepas (Gastropoda) and Mesodesma donacium (Bivalvia). J. Shellfish Res. 20, 43–49. [CrossRef]
  • Richardson C.A., Crisp D.J., Runham N.W., 1979, Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edule (L.). Malacologia 18, 277–290.
  • Richardson C.A., Crisp D.J., Runham N.W., 1980, An endogenous rhythm in shell deposition in Cerastoderma edule. J. Mar. Biol. Assoc. UK 60, 991–1004. [CrossRef]
  • Richardson C.A., Crisp D.J., Runham N.W., 1981, Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule. J. Mar. Biol. Assoc. UK 61, 465–476. [CrossRef]
  • Rowley R.J., Mackinnon D.I., 1995, Use of the fluorescent marker calcein in biomineralisation studies of brachiopods and other marine organisms. Bull. Inst. Oceanogr. Fish. 14, 111–120.
  • Schmitt P.D., 1984, Marking growth increments in otoliths of larval and juvenile fish by immersion in tetracycline to examine the rate of increment formation. Fish. Bull. 82, 237–242.
  • Schöne B.R., Tanabe K., Dettman D.L., Sato S., 2003, Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol. 142, 473–485.
  • Schöne B.R., 2008, The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells., Geo Mar. Lett. 28, 269–285.
  • Thebault J., Chauvaud L., Clavier J., Fichez R., Morize E., 2006, Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Mar. Biol. 149, 257–267. [CrossRef]
  • Wanamaker A.D., Baker A., Butler P., Richardson C.A., Scourse J.D., Ridgway I., Reynolds D.J., 2009, A novel method for imaging internal growth patterns in marine molluscs: a fluorescence case study on the aragonitic shell of the marine bivalve Arctica islandica (Linnaeus). Limnol. Oceanogr. Methods 7, 673–681.
  • Wilbur K. M., Owen G., 1964, Growth. In: Wilbur K.M., Yonge C.M. (Eds). Physiology of the Mollusca. Academic Press, New York, pp. 211–242.